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The existence of maximal indecomposable past sets MIPs is demonstrated using 
the Kuratowski-Zorn lemma. A criterion for the existence of an absolute event 
horizon in space-time is given in terms of MIPs and a relation to black hole event 
horizon is shown. 

1. I N T R O D U C T I O N  

Geroch, Kronheimer, and Penrose (1972) have shown, under very 
general assumptions, that we can assign a boundary to space-time using 
certain past and future sets. In this paper  we exploit the natural ordering 
induced by the causality relation on those past sets. Application of the 
Kura towski -Zorn  lemma gives us the existence of certain past sets the 
presence of which allows us to ascertain the existence of regions of space-time 
that will never be seen by an observer no matter  how he chooses to move. 

2. T H E  EXISTENCE OF M I P S  

In the following by space-time (9]L, ~,) we shall mean a Hausdorff,  
connected, C 2 manifold e)]L without boundary which admits a Lorentz 
metric g. We shall assume that (~ g) is past distinguishing, i.e., such that 
for points p , q ~ , p ~ q  implies 1 - ( p ) : x I - ( q ) .  A subset P of c~_. is a 
past set if it coincides with its own chronological past I - ( P )  and it is 
indecomposable if it is not empty and it cannot be expressed as a union of 
two proper subsets which are themselves past sets (Geroch et al., 1972). 
Following Geroch et al. (1972) we shall call such sets IPs. 
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Lemma 1. Let ~ be the set of all IPs of ~IL; then 6~ is partially 
ordered by inclusion and inductive. 

Proof. Since for any P, Q, R ~ r we have (1) P c P; (2) if P c Q and 
Q c P  then P = Q ;  (3) if P c Q  and Q c R  then P e R ;  ~ i s  partially 
ordered by inclusion. 

Consider any chain in G_Y]L, that is a subset ~ o of o-~ such that for any 
two elements X, Y of ~.'~o either X c Y or Y c X. Take the union 0 o of all 
elements of the chain r Clearly 0 o is a past set. It must also be 
indecomposable otherwise there exist past sets Q and R such that [/o = Q t.) R 
and we can find points q, r ~ CAlL such that q ~ Q -  R and r ~ R -  Q. 
However, we must have q ~ X and r ~ Y where X and Y are IPs of the chain 
r But either X c  Y or Y c X, therefore either r ~ I - ( q )  or q ~ I - ( r ) ,  
and consequently either Q or R contains both q and r, but this contradicts 
the construction of q and r. Thus we have shown that ~ is a partially 
ordered set such that for every chain r o of 9L there exists an element X o of 

such that for any X c r X c X o. By definition (Maurin, 1976, 
Chapter 1, p. 18) it follows that cAlL is inductive. �9 

An element M of 6fill such that M is not a proper subset of any element 
of ~ is said to be maximal. By Lemma 1 and the Kuratowski-Zorn lemma 
(Maurin, 1976, Chapter 1, p. 18) we immediately have the following: 

Theorem 1. Let r be the set of all IPs in ~ then there exists a 
maximal element in ej~. 

We shall call the maximal indecomposable past sets MIPs. 
The IPs can be divided into two classes, consisting of those which are 

of the form 1 - ( p )  for some p ~ cAlL, called proper IPs or PIPs, and those 
which are not, called terminal IPs or TIPs (Geroch et al., 1972). 

Lemma 2. Let M be a MIP in a~  then it must be a TIP. 

Proof. Suppose that M is a PIP; then M =  I - ( p ) ,  the chronological 
past of some point p ~ ~ [Geroch et al., 1972, Theorem (2.3)]. Thus there 
exists a neighborhood ~ of p in r and consequently a point q in ~ to the 
future of p such that M is a proper subset of I - ( q )  since 6"ALL is past 
distinguishing. This contradicts maximality of M. �9 

3. MIPs AND ABSOLUTE EVENT HORIZONS 

We know that TIPs define the future causal boundary (c boundary) of 
space-time (Geroch et al., 1972). We can think of MIPs as forming the 
essential part of the c boundary in the sense that any point of s3L must be in 
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some MIP: 

Theorem 2. A point p belongs to some MIP of ~ r p belongs to 
the space-time manifold 631l,. 

Proof. ~ If p belongs to some MIP of ~)E it obviously must belong to 
since MIPs are subsets of 91l,. 

Any point of ~.~ is in some IP of 91l,. Therefore it is enough to prove 
that any IP is a subset of some MIP. Suppose that there is a nonempty 
subset 9l, of IPs of 9]L that do not belong to any MIP. The set J t  forms 
again a set partially ordered by inclusion. ~ must also be inductive 
otherwise there exists an IP not in ~ that contains some chain ~ o  from ~ ,  

but since any IP not in ~ is a subset of some MIP so is ~'o which 
contradicts the construction of ~ .  Thus by the Kuratowski-Zorn lemma 
there exists a maximal element M'  in ~ .  This IP is not a proper subset of 
any IP in ~ nor of any IP in ~ - ~ thus by definition ~t is a MIP in ~ .  
This contradicts the existence of the non-empty set ~%. �9 

Any TIP is the chronological past of some future-endless timelike curve 
[Geroch et al., 1972, Theorem (2.1)]. The boundary of a TIP is called the 
event horizon since it defines limits of regions of space-time that will never 
be visible by observers moving along causal curves (see Geroch et al., 1972, 
and Hawking and Ellis, 1973, p. 129). Some space-times possess the prop- 
erty that no matter how an observer O chooses to move there always be 
regions of space-time that will never be observable by O. In such a case we 
can say that there exists an absolute event horizon. The absolute event 
horizon can be thought of as giving event horizons for timelike geodesics 
(see Hawking and Ellis, p. 129). The main result of this paper is that MIPs 
can be used to define absolute event horizons. 

Definition 1. The boundary in 91l, of a TIP is an absolute event horizon 
if and only if it is a MIP. 

Intuitively we associate the existence of an absolute event horizon 
with the presence of spacelike components in the boundary of space-time 
(Hawking and Ellis, 1973, p. 130). MIPs can be used to make the concept of 
space-like point of the c boundary precise: 

Definition 2. A TIP defines a spacelike c boundary point if and only if 
it is a MIP. 

We have the following criterion for the existence of a nonempty 
absolute event horizon. 

Theorem 3 (cf. Seifert, 1971, Theorem 6.2). There exists a non- 
empty absolute event horizon in (91< g) ~ there exist two MIPs in 
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Proof. =, Suppose that there exists only one MIP in o-~ then from 
Theorem 2 it must coincide with the space-time manifold cAlL and thus its 
boundary in ~ must be empty. 

If there were two MIPs in o~ then by maximality neither is all of 
63L. So neither can have empty boundary in 6")/L. �9 

The MIPs of the Schwarzschild space-time (Hawking and Ellis, 1973, 
Figure 24, p. 154) consists of pasts of all points of the future singularity 
r = 0 and also of pasts of two points denoted by i § which are end points of 
future-endless timelike curves. 

A general class of space-times that do not admit any absolute event 
horizon are asymptotically simple and empty (ASE) space-times (for defini- 
tion see Hawking and Ellis, 1973, p. 222). This follows from the argument of 
Hawking and Ellis (1973) on pp. 224 and 225 where the existence is 
demonstrated of a TIP that coincides with the whole space-time manifold. 

Any null geodesic in an ASE space-time has a future end point on part 
of its boundary 06)]L denoted by 5 + and called future null infinity. It is clear 
that then J - ( 5  +, 9Y~), the causal past of 5 § in 9Y~, must coincide with ~)]L 
itself. 

4. MIPs AND BLACK HOLE EVENT HORIZONS 

One would like to know whether there is a relationship between an 
absolute event horizon and a black hole event horizon. The latter is defined 
in a weakly asymptotically simple and empty space-time as the boundary 
J - ( 5  +, cA/L). A space-time (cAlL, g) is called weakly asymptotically simple 
and empty (WASE) if there is an ASE space-time (gL', g,) and a neighbor- 
hood ~ '  of 3~ ' in 6"AL' such that ~ '  ca 63~' is isometric to an open set ~ of 
63]L (Hawking and Ellis, 1973, p. 225). Indeed, in the Schwarzschild space- 
time, J - ( 5  § e3L) is the boundary of one of two MIPs. These MIPs are pasts 
of two points i § and they are unique MIPs such that the null generators of 
their boundaries are not converging. However, it is easy to convince oneself 
that I - (5+ ,9L)  is no longer a MIP if we modify the Schwarzschild 
space-time so that its boundary at the singularity becomes null. Another 
case is the maximally extended Reissner-NordstrOm solution (Hawking and 
Ellis, 1973, Figure 25, p. 158) where the MIP coincides with the whole of the 
space-time manifold. Nevertheless we can prove the following: 

Theorem 4. Let J - ( 5  § 6"ALL) be the black hole event horizon in a 
WASE space-time (63L, g); then I - (5  +, r the chronological past 
of 5 § in 63]L, is a TIP in ~ and there exists a timelike curve ?~ such 
that I-(?~) = 1-(5 § 9Y~) and an isometry map f from an open set in 
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~ to an open neighborhood of a~ ' in an ASE space-time 
(~ g') such that I - ( f [ ~ ] )  is a MIP in o-~,. 

Proof. By definition of the WASE space-time there exists a correspond- 
ing space-time (gE',  g'). The MIP of ( ~ ' ,  g') coincides with ~ itself and 
by Theorem (2.1) of Geroch et al. (1972) it is of the form I-(~") for some 
future-endless timelike curve ~" in 9L'. Consider the intersection ~' of 2," 
with the neighborhood ~ of O ~ '  in the definition of the WASE space-time, 
we still have I - (~ ' )  = ~ ' .  Since ~ ' A  ~ is isometric to an open set ~ in 
~ we have that ? , '=f[~,]  where f is the isometry map and ~ is a 
future-endless timelike curve in eSL. I - (X)  is a TIP in ~ and it must 
coincide with I - (  ~q +, ~ by definition of the WASE space-time. �9 
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